Stock Price forecasting based on Quantum Particle swarm optimization

نویسندگان

چکیده

The stock market is very volatile, so the change of price also widely concerned by investors. In this paper, a new forecasting model based on Quantum Particle Swarm Optimization(QPSO) , Bee Colony Optimization Algorithm(QABC) and Fruit Fly Algorithm (QFOA) proposed. three methods all use BP neural network to adjust parameters particle swarm, bee colony Drosophila reach optimal parameters. Taking daily closing CITIC Securities Tianfeng Securities, large-scale small-scale securities company, as object empirical analysis, comparing accuracy in predicting stocks, it analyzes whether size company has an effect model. results show that prediction qpso best, some influence effect.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stock price prediction using the Chaid rule-based algorithm and particle swarm optimization (pso)

Stock prices in each industry are one of the major issues in the stock market. Given the increasing number of shareholders in the stock market and their attention to the price of different stocks in transactions, the prediction of the stock price trend has become significant. Many people use the share price movement process when com-paring different stocks while investing, and also want to pred...

متن کامل

Stock Price Predicting Using SVM Optimized by Particle Swarm Optimization Based on Uncertain Knowledge

Stock prices have the characteristics of nonlinearity, randomicity and uncertainty, so It is difficult to accurately depict the change rules of stock prices using traditional linear forecasting methods, which lead to low stock price prediction accuracy. In order to improve the stock price prediction precision , this paper proposed a stock price predicting model using SVM optimized by particle s...

متن کامل

Prediction of Stock Price using Particle Swarm Optimization Algorithm and Box-Jenkins Time Series

The purpose of this research is predicting the stock prices using the Particle Swarm Optimization Algorithm and Box-Jenkins method. In this way, the information of 165 corporations is collected from 2001 to 2016. Then, this research considers price to earnings per share and earnings per share as main variables. The relevant regression equation was created using two variables of earnings per sha...

متن کامل

Streamflow forecasting by SVM with quantum behaved particle swarm optimization

Accurate forecasting of streamflows has been one of the most important issues as it plays a key role in allotment of water resources. However, the information of streamflow presents a challenging situation; the streamflow forecasting involves a rather complex nonlinear data pattern. In the recent years, the support vector machine has been used widely to solve nonlinear regression and time serie...

متن کامل

Daily Reservoir Runoff Forecasting Method Using Artificial Neural Network Based on Quantum-behaved Particle Swarm Optimization

Accurate daily runoff forecasting is of great significance for the operation control of hydropower station and power grid. Conventional methods including rainfall-runoff models and statistical techniques usually rely on a number of assumptions, leading to some deviation from the exact results. Artificial neural network (ANN) has the advantages of high fault-tolerance, strong nonlinear mapping a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International journal of social science and human research

سال: 2021

ISSN: ['2644-0695', '2644-0679']

DOI: https://doi.org/10.47191/ijsshr/v4-i10-29